首页> 外文OA文献 >Denotational semantics for modal systems S3--S5 extended by axioms for propositional quantifiers and identity
【2h】

Denotational semantics for modal systems S3--S5 extended by axioms for propositional quantifiers and identity

机译:模态系统s3 - s5的指称语义由公理扩展   命题量词和身份

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are logics where necessity is defined by means of a given identityconnective: $\square\varphi := \varphi\equiv\top$ ($\top$ is a tautology). Onthe other hand, in many standard modal logics the concept of propositionalidentity (PI) $\varphi\equiv\psi$ can be defined by strict equivalence (SE)$\square(\varphi\leftrightarrow\psi)$. All these approaches to modality involvea principle that we call the Collapse Axiom (CA): "There is only one necessaryproposition." In this paper, we consider a notion of PI which relies on theidentity axioms of Suszko's non-Fregean logic $\mathit{SCI}$. Then $S3$ provesto be the smallest Lewis modal system where PI can be defined as SE. We extend$S3$ to a non-Fregean logic with propositional quantifiers such that necessityand PI are integrated as non-interdefinable concepts. CA is not valid and PIrefines SE. Models are expansions of $\mathit{SCI}$-models. We show that$\mathit{SCI}$-models are Boolean prealgebras, and vice-versa. This associatesNon-Fregean Logic with research on Hyperintensional Semantics. PI equals SE iffmodels are Boolean algebras and CA holds. A representation result establishes aconnection to Fine's approach to propositional quantifiers and shows that ourtheories are \textit{conservative} extensions of $S3$--$S5$, respectively. Ifwe exclude the Barcan formula and a related axiom, then the resulting systemsare still complete w.r.t. a simpler denotational semantics.
机译:有一些逻辑通过给定的标识连接定义必要性:$ \ square \ varphi:= \ varphi \ equiv \ top $($ \ top $是重言式)。另一方面,在许多标准模态逻辑中,命题身份(PI)$ \ varphi \ equiv \ psi $的概念可以通过严格等价(SE)$ \ square(\ varphi \ leftrightarrow \ psi)$来定义。所有这些模态方法都涉及一个我们称为崩溃公理(CA)的原则:“只有一个必要的命题。”在本文中,我们考虑了PI概念,它依赖于Suszko的非法语逻辑$ \ mathit {SCI} $的身份公理。然后证明$ S3 $是最小的Lewis模态系统,其中PI可以定义为SE。我们将S3 $扩展到带有命题量词的非法语逻辑,以便将必要性和PI集成为不可定义的概念。 CA无效,PIrefines SE。模型是$ \ mathit {SCI} $模型的扩展。我们证明$ \ mathit {SCI} $模型是布尔前代数,反之亦然。这将非法语逻辑与超内涵语义学的研究联系起来。 PI等于SE差异模型是布尔代数,CA成立。表示结果与Fine的命题量词方法建立了联系,并表明我们的理论分别是$ S3 $-$ S5 $的\ textit {conservative}扩展。如果我们排除Barcan公式和相关公理,则所得系统仍然是完整的。更简单的指称语义。

著录项

  • 作者

    Lewitzka, Steffen;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号